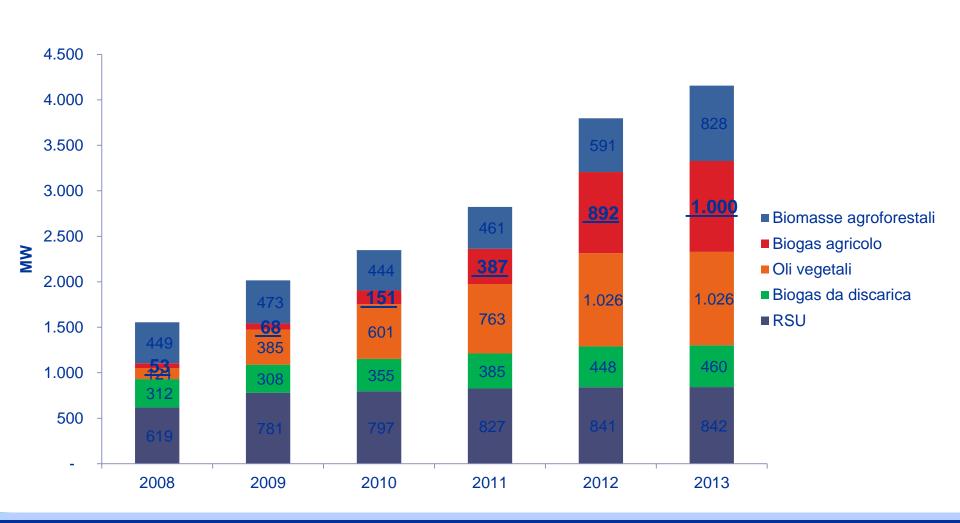


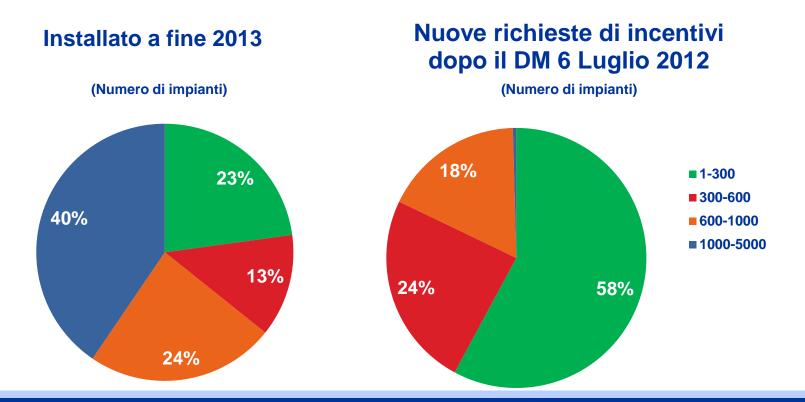
Energia in agricoltura: le novità normative e le scelte possibili


Aspetti tecnico-economici del biometano

Venerdì 12 Dicembre 2014 Politecnico di Milano, Polo Territoriale di Cremona

> Lorenzo Colasanti - Energy & Strategy Group Iorenzo.colasanti@polimi.it

La filiera del biogas: l'andamento della potenza installata in Italia

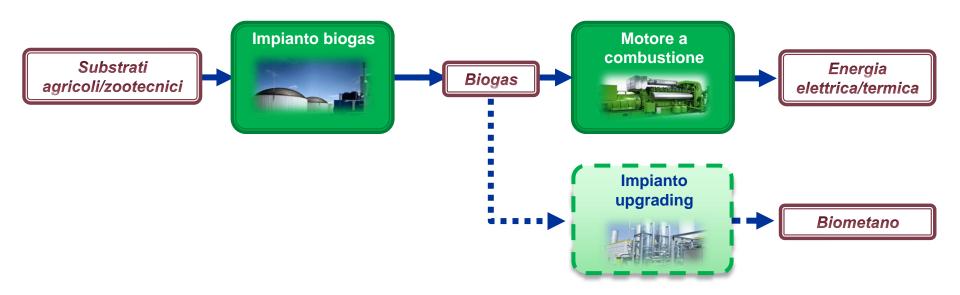


La filiera del biogas: l'inversione di tendenza con il DM 6 Luglio 2012

- Il mercato del biogas agricolo per la produzione elettrica è cambiato notevolmente a seguito dell'introduzione del Decreto Ministeriale del 6 Luglio 2012.
- La taglia media degli impianti di recente sviluppo si è più che dimezzata rispetto all'impianto standard da 999 kW realizzato fino al 2012.

La filiera del biogas: l'attenzione degli operatori

La filiera si è consolidata negli ultimi anni con gli operatori che ora stanno riorganizzando la loro offerta di prodotti per seguire i nuovi sistemi di incentivazione.


Alcuni operatori stranieri sono usciti dal mercato italiano per focalizzarsi su mercati esteri più redditizi.

Operatori	Quota di mercato stimata	
BTS (include UTS prima del 2009)	15-20%	
Rota	15-20%	
IES	10-15%	
Sebigas	5-7%	
Thoni	5-7%	
Envitec	5-7%	
MT-Energie	5-7%	
Schmack	4-5%	

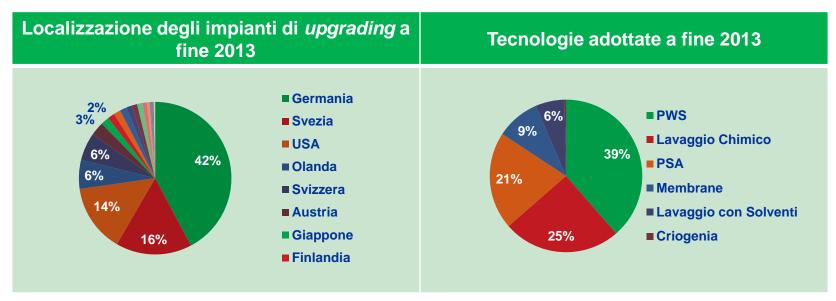
La filiera del biogas: il biometano

Nel settore del biogas c'è una novità che potrebbe portare all'affermarsi di una seconda filiera parallela a quella che recentemente si è sviluppata per la produzione elettrica: la filiera dell'upgrading del biogas a biometano.

Il biometano: le tecnologie di *upgrading*

- Il D.Lgs. 28/116 definisce il biometano come il "gas ottenuto a partire da fonti rinnovabili avente caratteristiche e condizioni di utilizzo corrispondenti a quelle del gas metano e idoneo alla immissione nella rete del gas naturale".
- Le fasi di *upgrading* del biometano riguardano essenzialmente: la **rimozione delle impurità** dal biogas, la **rimozione dell'anidride carbonica** e il **post trattamento** del biometano ottenuto **per finalizzare l'immissione** in rete.
- Differenti processi tecnologici possono essere applicati per effettuare la purificazione e l'upgrading del biogas:
 - la tecnologia dell'assorbimento a pressione oscillante (Pressure Swing Adsorption PSA);
 - la tecnologia dell'assorbimento «standard» (Pressure Water Scrubber PWS;
 lavaggio con solventi organici o lavaggio chimico con ammine);
 - la tecnologia a membrana;
 - le tecnologie criogeniche.

Il biometano: le tecnologie di *upgrading*



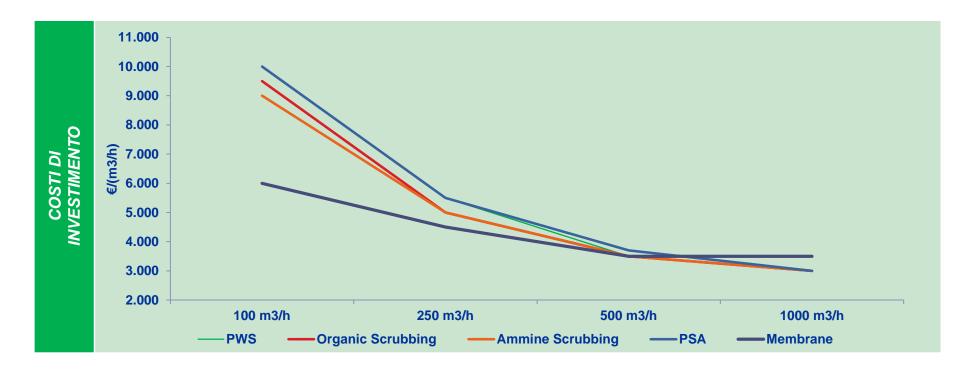
Tecnologia	Descrizione
PSA	 Utilizzo di zeoliti o carboni attivi, che agiscono come setacci molecolari per trattenere le molecole di anidride carbonica sulla propria superficie, a determinate condizioni di pressione. La CO₂ viene quindi rilasciata nella fase di depressione.
PWS	 Il processo si basa sulla solubilità in acqua dell'anidride carbonica. Il gas viene fatto gorgogliare attraverso un contenitore di acqua sotto pressione. Oltre alla CO₂, il processo è in grado di rimuovere anche una certa percentuale di ammoniaca e di idrogeno solforato, ma, in presenza di elevate quantità di quest'ultimo, è necessaria una prima desolforazione. Al termine del processo è necessario procedere all'essicazione del gas.
Lavaggio amminico	 Anche il lavaggio amminico si basa su un assorbimento chimico. A differenza delle tecnologie di lavaggio ad acqua in pressione, i gas da rimuovere vengono assorbiti attraverso reazioni chimiche. In questo modo è possibile aumentare significativamente il carico del fluido di lavaggio.
Separazione a membrana	 Il processo di separazione a membrana si basa sulle proprietà di semipermeabilità di alcuni polimeri, che sono impermeabili per il metano, ma permeabili da parte dell'anidride carbonica. Per ottenere una buona separazione, è necessario spingere il gas attraverso la membrana ad una pressione da 25 a 40 bar. Questa tecnologia è in continuo perfezionamento e sembra vantaggiosa per impianti di minori dimensioni. Fondamentale per la durata della membrana è la preventiva rimozione dell' H₂S e di altre impurità.
Criogenica	 Questa tecnologia si basa sul fatto che gas differenti hanno differenti temperature di liquefazione. Richiede notevoli quantità di energia per raggiungere temperature molto basse e alte pressioni, tuttavia permette di ottenere grandi volumi di metano ad alta purezza (99%) e CO₂ di purezza commerciale. Può costituire un'opzione per impianti di grandi dimensioni e in particolari configurazioni che presentino disponibilità di energia o di freddo (es. in combinazione con impianti di rigassificazione).

Il biometano: gli impianti in funzione nel Mondo

- In Italia a fine 2013 non erano ancora presenti impianti di upgrading tuttavia in Europa già alcuni Paesi hanno scommesso su queste tecnologie.
- Complessivamente al Mondo sono in funzione oltre 340 impianti di upgrading e i Paesi di riferimento sono la Germania e la Svezia.

Fonte: elaborazione su dati IEA Bioenergy

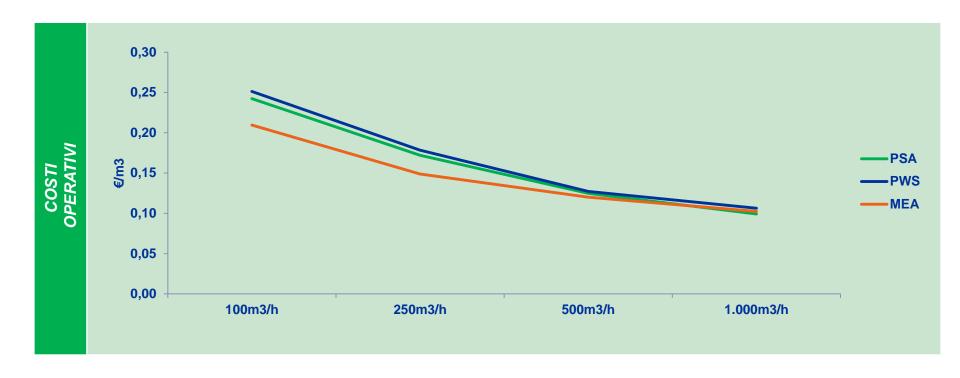
Il biometano: il mercato tedesco



Focus: il mercato tedesco

- Il mercato tedesco è da sempre il punto di riferimento per lo sviluppo del biogas.
- In Germania sono operativi oltre 8.000 impianti per la produzione di biogas.
- Nonostante l'«anzianità» del settore biogas tedesco, la **produzione di biometano è uno** sviluppo relativamente nuovo per la Germania: soltanto nel 2006 sono entrati in esercizio i primi due impianti, ma, a fine 2013 ne erano già in funzione circa 150.
- Il biometano viene quindi considerato **strategico per diminuire la dipendenza energetica**, con l'obiettivo di soddisfare il **10% dei consumi lordi tedeschi totali**.
- Per quanto riguarda le dimensioni degli impianti di *upgrading*, **oltre il 70% degli impianti è compreso tra capacità di 260 e 750 m³/h**, che equivalgono, grossomodo a impianti di biometano con produzione elettrica di taglia tra 1 e 3 MW.
- La tipologia di alimentazione degli impianti tedeschi riflette la scelta strategica tedesca di sviluppo del biogas basato su biomasse coltivate ed effluenti zootecnici e agricoli.

Analisi d'investimento: i costi dell'*upgrading* a biometano



- I costi di investimento relativi alle varie tecnologie non si differenzino molto, specialmente per impianti di grande taglia: dai 500 m³/h (equivalenti a 2 MW di potenza elettrica installata) di biometano prodotto, i costi delle tecnologie tendono a convergere.
- L'unica eccezione è rappresentata dalla tecnologia a membrane che, per le piccole e medie taglie, risulta essere più vantaggiosa rispetto alle altre a causa della sua maggiore scalabilità.

Analisi d'investimento: i costi dell'*upgrading* a biometano

- ▶ I costi operativi sono essenzialmente dovuti a consumo termico ed elettrico.
- Sommando la componente elettrica con quella termica, l'energia richiesta per l'upgrading con le diverse tecnologie è simile.

Analisi d'investimento: i costi dell'*upgrading* a biometano

- La tecnologia **PSA e la PWS sono mature da molti anni**, e l'innovazione riguardo a queste tecnologie è oggi solo di tipo incrementale:
 - i sistemi PWS sono stati ottimizzati ed hanno bisogno di molta meno acqua per funzionare rispetto a qualche anno fa;
 - nei sistemi PSA, invece, è stato ridotto di molto il numero di valvole di pressione che rendono questa tecnologia molto costosa e si è fatto un grosso passo in avanti anche per quanto riguarda la riduzione del tempo di ciclo.
- Inoltre si possono riscontrare due trend di grande importanza che hanno avuto luogo nell'ultimo decennio:
 - la grande crescita della tecnologia a lavaggio amminico, che fino al 2009 in alcuni impianti era ancora usata a scopo dimostrativo, mentre oggi si è consolidata e rappresenta un'alternativa molto valida soprattutto per gli impianti di taglia più grande (grande sviluppo soprattutto in Germania);
 - un notevole sviluppo delle prestazioni delle membrane ad alta selettività, che ha permesso un loro impiego anche nel campo dell'upgrading del biogas; questa tecnologia sta rapidamente scalando le gerarchie all'interno del panorama tecnologico, con un crescente numero di impianti in corso di progettazione e costruzione in tutta Europa.

Il biometano: le nuova normativa in Italia

- In Italia il 17 Dicembre del 2013 è stato pubblicato in Gazzetta Ufficiale il Decreto Legislativo riguardante le modalità di incentivazione del biometano immesso nella rete del gas naturale.
- Il Decreto prevede **3 modalità di incentivazione** a seconda che il biometano sia immesso in rete, usato per la cogenerazione o venduto come carburante per i trasporti.
- Il Decreto approvato lascia tuttavia alcune questioni ancora da definire con decreti attuativi successivi o con decisioni a livello comunitario-europeo. In particolare è necessario che:
 - sia data la definizione di FORSU (Frazione Organica Rifiuti Solidi Urban);
 - si faccia chiarezza sul valore dei certificati di immissione in consumo di biocarburanti;
 - si decida chi deve sostenere eventuali costi di immissione in rete del biometano prodotto (proprietario della rete vs proprietario dell'impianto).

Il biometano: il mercato in Italia

- Il mercato italiano che si delineerà avrà caratteristiche fortemente determinate dalla normativa.
- Infatti sono stati **privilegiati**, da un lato, **l'utilizzo di FORSU** (che finora non era stata molto sfruttata dalla filiera del biogas per la produzione elettrica) e, dall'altro, la **realizzazione di nuove stazioni per la vendita diretta del biometano**.
- Diventa quindi fondamentale la gestione delle materie prime e la capacità di riuscire a distribuire il biometano prodotto. Sembrano quindi essere favorite le utilities e le ex municipalizzate che gestiscono la raccolta e il trattamento dei rifiuti (FORSU) e che, spesso, dispongono anche di un parco veicoli offrendo servizi di trasporto pubblico.
- Che questa sia la direzione di sviluppo lo si può anche capire da alcuni Bandi Regionali, come quello della Regione Lombardia che ha stanziato 1 mln di Euro per gli anni 2014-2015 per «sostenere lo sviluppo della rete distributiva di metano liquido e biometano».

Il biometano: la filiera in Italia

- Numerose sono le **imprese che, al momento, offrono soluzioni per l'upgrading**, in alcuni casi attraverso **tecnologie proprietarie** in altri offrendo soluzioni di altre imprese attive nella **tecnologia di purificazione dei gas**.
- Le difficoltà che questi operatori dovranno affrontare non riguarderanno solo l'adozione di una nuova tecnologia, ma saranno soprattutto di natura amministrativa-burocratica poiché tutti gli enti con cui dovranno interfacciarsi per richiedere autorizzazioni/incentivi sono completamente diversi da quelli per la filiera della produzione di energia elettrica.
- Di seguito le principali imprese a livello globale per tecnologia offerta.

PWS	Chemical Scrubbing	PSA	Membrane
DMT	Arol Energy	Acrona-systems	Air Liquide *
Econet	BIS E.M.S.	Carbotech	Arol Energy
Greenlane Biogas	Cirmac	Cirmac	Cirmac
Malmberg Water	Energy & Waste Technologies	ETW Energietechnik	DMT
RosRoca	Hera Clean Tech	Guild	Eisenmann *
	MT-Biomethan *	Mahler	EnviTec Biogas *
	Purac Puregas	Strabag	Gastechnik Himmel
	Strabag	Sysadvance	Haffmans
		Xebec	Mainsite Technologies
			MT-Biomethan *

^{*} Imprese attive direttamente in Italia

Fonte: elaborazione su dati IEA Bioenergy

Energia in agricoltura: le novità normative e le scelte possibili

Aspetti tecnico-economici del biometano

Venerdì 12 Dicembre 2014 Politecnico di Milano, Polo Territoriale di Cremona

> Lorenzo Colasanti - Energy & Strategy Group lorenzo.colasanti@polimi.it